With the introduction of pedicle screws in the 1980s and cages in the 1990s, lumbar fusion with instrumentation became a common procedure for treating degenerative disc disease. Scientific literature demonstrates that many posterior fixation techniques that utilize pedicle screws and rods, interspinous graft with ligament or translaminar screws improve the fusion rates of both stand-alone intervertebral grafting and stand-alone intervertebral implants.

The coflex-F™ implant is an interlaminar stabilization device that can be delivered through a minimally invasive approach. It provides significant segmental stability and posterior fixation for anterior column fusion. Biomechanical studies demonstrate that the solid anchoring of the coflex-F implant through rigid connection to the spinous processes provides similar posterior stabilization as pedicle screws thereby increasing the likelihood of successful anterior fusion (Table 1).

The implantation technique is safe and easy. Complications encountered with the conventional pedicle screw systems can be avoided.

The coflex-F implant offers an important alternative to pedicle screw fixation as an adjunct to intervertebral fusion.
Indication Specific

The coflex-F implant is a posterior, non-pedicle supplemental fixation device intended for use with an interbody cage as an adjunct to fusion at a single level in the lumbar spine (L1 – L5). It is intended for attachment to the spinous processes for the purpose of achieving stabilization to promote fusion in patients with degenerative disc disease - defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies - with up to Grade 1 spondylolisthesis.
Interlaminar stabilization with the coflex-F implant* is an ideal adjunct to fusion in cases of degenerative disc disease with or without mild instabilities in the lumbar spine. The coflex-F implant allows segmental stabilization in combination with interbody fusion cages and is bridging the gap between stand-alone anterior solutions and 360° fusions using pedicle screw fixation.

Design Features:
- Interlaminar positioning
- Secure anchorage through screw and sleeve fixation
- Large contact area for optimized stress distribution
- Five anatomical sizes
- Color coded instrumentation
- Titanium alloy - biocompatible

Reduced Iatrogenic Trauma
- Less muscle trauma
- Less blood loss
- Smaller skin incision

Reduced Surgical Risks
- Excellent safety profile of implant
- Protection of neural structures
- Easy and precise application

Reduced Cost
- Shorter operating time
- Faster patient rehabilitation

Ease of Use
- Simple surgical technique
- Intuitive instrumentation

*US Patent 5, 645, 599. Also Patented in other Foreign Countries. Additional Patents Pending in the U.S. and Worldwide.
1. Lumbar Interbody Fusion

According to the pathology interbody fusion is performed per the surgeon’s preference. It is important to note that the *coflex-F* implant is always inserted after implantation of an intervertebral device.

2. Preparation

Once intervertebral fusion has been performed the patient is prepared for posterior stabilization with the *coflex-F* implant. Care should be taken to preserve the facet capsules including at least 50% of the medial facets during cage insertion.

The patient is placed in prone position on a surgical frame avoiding hyperlordosis of the spinal segment(s) to be operated on. Routine (midline) skin incision is performed. The muscle is sharply dissected lateral to the supraspinous ligament. Paraspinal muscles are stripped off the laminae. The interspinous ligament is sacrificed and any bony overgrowth of the spinous process is resected that may interfere with the insertion of the *coflex-F* implant.

3. Implant Site Preparation

Trials are utilized to define the appropriate implant size. The trial instrument is placed to evaluate proper contact with the spinous processes avoiding any facet distraction. Some bony resection of the spinous process may be needed to ensure optimal contact of the implant.

4. Implant Insertion

The implant is introduced via impaction utilizing a mallet. Prior to insertion the wings may need to be opened slightly using the bending pliers to ensure appropriate depth of insertion (Fig. 1). Proper depth is determined by passing a beaded tip probe between the implant and the dura to ensure a 2-3 mm separation.
By deeply inserting the coflex-F implant at the level of the facet joints the implant counteracts the majority of posterior column forces.

Fig. 1

Once proper placement has been achieved, it is recommended to securely crimp the wings of the implant using the crimping pliers (Fig. 2). Then punching pliers are utilized to create a hole in each spinous process for later introduction of the coflex-F screws.

Fig. 2

Prior to insertion of the coflex-F screws it is recommended to clean the holes using the coflex-F probe.

The coflex-F screws are attached to the screw inserter and applied into the spinous processes using the screw driver. A tight fit is required for controlled fixation. The teeth of both wings should be firmly engaged into the cortices of the spinous processes.

5. Wound Closure

A surgical drain may be placed as per surgeon preference. Paraspinal muscles are reattached to the supraspinous ligament. Skin is closed in the usual manner.
Case 1:
Female, 53 years, Scientific Consultant:

- Symptoms: 10+ years of progressive low back pain. 3+ years of sciatic pain and Trendelenburg signs. Reduced walking distance of 50-100 meters.
- MRI: Degenerative disc disease at level L2/3, osteochondrosis at levels L4/5 and L5/S1, disc protrusions at levels L3/4, L4/5 and L5/S1.
- Diagnosis: Degenerative disc disease at level L2/3.
- Previous Therapy: Failed conservative treatment. Infiltrations including discography with improvement for 4 weeks.
- Surgery: Spondylodesis at level L2/3 with ALIF cage (Syncage) and *coflex-F* implant size 10 mm. Bone graft from left iliac crest.
- Follow-up at 12 months: Patient extremely satisfied with treatment. Back pain has improved from VAS 9 preoperatively to 0.7 at 12 months, leg pain improved from VAS 6 to 0. ODI values also show marked improvement from 50 preoperatively to 4 postoperatively at 12 month time point.
Case 2:
Male, 43 years, Papermaker:

- Symptoms: Long history of progressive low back pain. More than 6 months of increasing left leg pain.
- Diagnosis: Degenerative disc disease with mild instability and disc protrusion at level L4/5.
- Previous Therapy: Failed conservative treatment. One microdiscectomy ten years ago and another microdiscectomy three years ago at level L4/5 to the left. Administration of various nerve root blocks.
- Surgery: Microsurgical decompression at level L4/5 and additional implantation of PEEK TLIF cage (Scient’X) and 8mm coflex-F implant at level L4/5.
- Follow-up at 12 months: Patient is very satisfied with treatment and stated that he would definitely have the surgery again. ODI and VAS scores showed marked improvement over 12 months timeframe. Bone formation visible at 3 month time point (x-ray AP and lateral), functional x-rays at 8 months show no motion at the L4/5 segment.
Product Information

Sterilization Tray
RAC 00000

Instruments

Bending Plier
UAT 10100

Crimping Plier
UAT 10200

Trials

<table>
<thead>
<tr>
<th>Color Code</th>
<th>Size</th>
<th>Article Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 mm</td>
<td>RCT 00016</td>
</tr>
<tr>
<td></td>
<td>14 mm</td>
<td>RCT 00014</td>
</tr>
<tr>
<td></td>
<td>12 mm</td>
<td>RCT 00012</td>
</tr>
<tr>
<td></td>
<td>10 mm</td>
<td>RCT 00010</td>
</tr>
<tr>
<td></td>
<td>8 mm</td>
<td>RCT 00008</td>
</tr>
</tbody>
</table>

Cleaning Tool
RAT 20130

Punching Plier
RAT 20100

Probe
RAT 20120
coflex-F™ Implant

Material:
All coflex-F implants consist of titanium 6-aluminium 4-vanadium (ISO 5832-3).

MRT:
Titanium is a non ferromagnetic material, therefore magnetic resonance imaging can be done.

The coflex-F implant is delivered sterile packed and includes a disposable application tool.

<table>
<thead>
<tr>
<th>Color Code</th>
<th>Size</th>
<th>Article Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 mm</td>
<td>RCI 00016</td>
</tr>
<tr>
<td></td>
<td>14 mm</td>
<td>RCI 00014</td>
</tr>
<tr>
<td></td>
<td>12 mm</td>
<td>RCI 00012</td>
</tr>
<tr>
<td></td>
<td>10 mm</td>
<td>RCI 00010</td>
</tr>
<tr>
<td></td>
<td>8 mm</td>
<td>RCI 00008</td>
</tr>
</tbody>
</table>